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The paper proposes a mixed analytical-numerical approach for an effective evaluation of the variation of the magnetic field 

generated by complex coils due to deformations with respect to the nominal configuration. The coils are described with a set of 

synthetic parameters and the deformations can be described as variations of such parameters. The work is focused on the context of 

sensitivity analysis but the methodology is quite general and can be easily extended in other fields. 
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I. INTRODUCTION 

ue to their complexity and required accuracy, the design 

of magnets used in a number of applications such as 

nuclear resonance imaging, controlled thermonuclear fusion or 

for particle accelerators is very demanding. As a matter of 

fact, together with the magnetic field evaluation accuracy, an 

additional priority is the robustness to prevent the degradation 

of the performance due to the inevitable discrepancies from 

the nominal design.  

In order to assess the effect of such variations, it is useful to 

perform a tolerance analysis. For this purpose, the coil shape 

can be described with a limited number of geometrical  

parameters p and the effect of the variations is evaluated as the 

variation of a performance function F( 𝑩(p;  𝒓)  ), where 𝐁 is 

the magnetic field and 𝒓 is the field point. Typical examples of 

the performance function are the field uniformity in NMR 

magnets [1] or the error field harmonics in fusion devices [2].  

The analysis can take benefit from the calculation of the 

gradient of F on the p components (Sensitivity Array, SA) [3]. 

Of course, such evaluation requires the preliminary evaluation 

of the derivatives of the magnetic field 𝐁 itself with respect to 

p. Unfortunately, the evaluation of the magnetic field 

generated by complex coils can be rather expensive.  

An effective approach to reach good accuracy is the 

discretization of the coil in a number of elementary sources as 

current segments, sheets or bricks. The subsequent evaluation 

of the magnetic field, under the assumption of absence of 

ferromagnetic materials, can be performed as the 

superposition of the contributes to the field of each of the 

elementary sources. The availability of Green functions in 

analytical form can be very useful to reduce the required 

computational burden, especially when high-performance 

architectures are available [4]. 

This paper proposes an effective approach to evaluate the 

magnetic field derivatives. The method takes advantage of the 

chain rule to split the dependence of the field on p on two 

components [5]: (i) a geometrical factor representing the 

impact of p on the actual magnet shape and (ii) a magnetic 

factor coming from the Green function describing how the 

field depends on the magnet shape. The splitting approach can 

be very effective when the sensitivity with respect to a large 

set of possible variations of the parameters is required. Due to 

lack of room, here just the mathematical formulation and a 

simple example are reported; more details will be provided in 

the final version of the paper. 

II. MATHEMATICAL FORMULATION 

Due to its complexity, in practical applications a magnet is 

discretized in Ns elementary sources suitably connected. The 

geometry information of the k-th source can be collected in an 

array 𝑞𝑘. Of course, if the shape of the magnet is assumed 

depending on a set of parameters p, then 𝑞𝑘 is a function of p 

as well. Therefore, the magnetic field in 𝒓 can be written as: 

𝑩 (p;  𝒓 ) = ∑ 𝑩𝒌

𝑁𝑠

𝑘=1

(𝑞𝑘 (𝑝) ;  𝒓 ,  𝑱𝒌)    (1) 

where 𝑩𝒌 is the magnetic field generated by the k-th source 

with current density  𝑱𝒌.  

The derivative of the magnetic field respect the i-th 

parameter of p can be evaluated by using the chain rule 
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where 𝑁𝑝(𝑘) is the number of parameters describing the k-th 

source.  

Eq. (2) shows how the sensitivity of the field on the 

geometrical parameters p can be split in two independent 

components. The magnetic factor does not depend on the 

shape parameters value; therefore, when just the impact of 

alternative shapes should be analyzed, just the second factor 

needs to be updated. 

The method is quite useful in a wide range of applications 

when the variation of the magnetic field due to small 

variations ∆p (due, for example, to mechanical deformations) 

with respect to the nominal ones 𝑝0 is required. In this case, a 

D 



first order Taylor expansion can be used to recover the 

variation of the field by using the sensitivity (2). 

III. ELEMENTARY SOURCES 

A number of elementary models useful to describe magnetic 

sources have been proposed in literature. In this paper, the 

attention is focused on three models (see Fig. 1): (a) Current 

Segment [6]: the vector of parameters 𝑞 includes the set of 

coordinates of the endpoints couples; (b) Planar Sheet [7]-[8]: 

𝑞 is assumed to contain the sets of coordinates of four 

vertices; (c) Current 3D bricks [9]: 𝑞 includes the coordinates 

of the set of the 8 vertex of the uniform current brick. 

 

 
 

 
Fig. 1. A complex 3D coil discretized (a) with current segments, (b) with 

sheets and (c) with bricks.  

IV. EXAMPLE OF APPLICATION 

Here a quite simple application is discussed with the aim of 

showing the effectiveness and the limits of the procedure. 

A massive magnet designed to generate the poloidal field in 

Toroidal fusion devices [10] is here considered (See. Table I). 

The magnet is composed by a circular winding of about one 

hundred of turns of superconductor cable. A parametric 

analysis on the impact of elliptical deformations has been 

considered here. A strong advantage comes from the splitting 

because just the geometrical factor needs to be updated 

providing this manner a computing burden reduction.  
 

TABLE I 

CONFIGURATION OF THE EXAMPLE 

PF Coil Radius 12 m 

PF Planar Plane z = 3.275 m 
Coil Current 10 MA 

Field point D1 coordinates {x = 9.32; y = 0; z = 2.36 } m 

Field point D2 coordinates {x = 8.81; y = 0; z = -2.33} m 
Field point D3 coordinates {x = 3.81; y = 0; z = -5.12} m 

 

In Fig. 2 the variation ∆𝑩 on three field points due to the 

deformations is shown normalized on the flux density 𝑩𝟎 of 

the nominal configuration. The variation of the field (∆𝑩𝑻) is 

evaluated both with a Taylor polynomial of first order and 

with the analytical current segment model (∆𝑩𝑺). The quality 

of the Taylor approximation is shown in Fig. 3 where the 

quantity |∆𝑩𝑻 − ∆𝑩𝑺|/|𝑩𝟎| is compared with the coil 

ellipticity, defined as ratio between major and minor axis. 

 
Fig: 2. Effect of the deformations on the magnetic field. 

 

 
Fig: 3. Quality of the Taylor polynomial of first order. 

 

The results of the analyzed case show that the accuracy of 

the linear estimation has better values for small deformations 

of the sources and large distances.  

This result can be a strong advantage when a wide range of 

deformations need to be considered as in sensitivity analysis: 

in fact, computations of the magnetic field can be expensive 

while by using the linear approximation it can be roughly 

reduced to simple multiplications. 
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